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Abstract

We develop new time-frequency analytic techniques which facilitate the rapid

detection of a person’s heart and breath rates from the Doppler shift the movement

of their body induces in a terahertz radar signal. In particular, the Doppler shift

in the continuous radar return is proportional to the velocity of the person’s body.

Thus, a time-frequency analysis of the radar return will yield a velocity signal. This

signal, in turn, may undergo a second time-frequency analysis to yield any periodic

components of the velocity signal, which are often related to the heart and breath rates

of the individual. One straightforward means of doing such an analysis is to take the

spectrogram of the ridgeline of the spectrogram of the radar signal. Instead of exactly

following this approach, we consider an alternate method in which the ridgeline of the

radar signal’s spectrogram is replaced with a signal computed from spectral centroids.

By using spectral centroids, rather than the ridgeline, we produce a smooth signal

that avoids some traditional problems with ridgelines, such as jump discontinuities

and overquantization. This new method for time-frequency analysis uses a Toeplitz

matrix-based algorithm that has a fast Fourier transform-based implementation, and

permits centroids of the vertical strips of the spectrogram of the radar signal to be

computed without ever having to explicitly compute the spectrogram itself. This

algorithm has a lower computational cost than the ridgeline method, and allows us

to increase our frequency resolution. We conclude by testing these ideas on real-life

data, successfully determining the heart and breath rates of a subject a distance of

10 meters from the radar aperture.
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Time-Frequency Analysis

of

Terahertz Radar Signals

for

Rapid Heart and Breath Rate Detection

I. Introduction

Time-frequency analysis is the study of how the frequency of a signal changes

over time. The Fourier transform is typically used to extract information regarding

the frequency of a signal. However, the Fourier transform is not appropriate when

dealing with a signal whose frequency content changes over time. A time-frequency

transform extracts both time and frequency information of a signal, that is, it indicates

what frequencies are present in the signal at any given time.

The data used in this study of time-frequency analysis is provided by Dr. Dou-

glas Petkie’s terahertz radar system, located in the Department of Physics at Wright

State University. This radar emits a continuous wave of electromagnetic radiation at

either 120 or 240 GHz in frequency. Radiation at these frequencies has the remarkable

ability to pass through clothing, but reflect off of skin. In particular, even minute mo-

tions of a person standing in the radar beam can be detected as a result of the Doppler

shift this movement induces in the frequency of the reflected wave. In particular, bi-

ological features such as heart and breath rates can be measured. This property of

the radar’s radiation penetrating clothing can be seen in Figure 1(a), provided by

Dr. Petkie, where at 120 and 240 GHz the fraction of radar energy that penetrates

the clothing is very high. Another important property of these particular frequencies

of radiation is the narrow beamwidth. In particular, as seen in Figure 1(b), even at
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(a) The fraction of radar energy that pene-
trates clothing is very high, thus allowing the
radiation to penetrate clothing, but reflect off
of the chest wall. Therefore, we can measure
the Doppler shift caused by the motion of the
chest wall and use this to measure biological
features such as heart and breath rates.

(b) Beam size as a function of distance with a 6
inch aperture. When the subject is at 50 meters,
we can see that the beam width of a 240 GHz wave
is approximately the width of an adult facing the
transmitter.

Figure 1: Properties of terahertz radar signals.

distances of 50 meters, the beam is narrow enough so as to only illuminate a single

individual, which helps mitigate the effects of clutter.

A basic outline of the pertinence of time-frequency analysis to the study of

these radar signals may be seen in Figure 2. In particular, Figure 2(a) shows a small

segment of 120 second’s worth of a 240 GHz radar signal which has reflected off a test

subject a distance of 10 meters from the transmitter/receiver. To be precise, Figure

2(a) shows the digital signal obtained by demodulating the received radar signal by

240 GHz, and then sampling the result at 10 kHz. As discussed in detail below in

Chapter III, the instantaneous frequency of this signal at any given time is the Doppler

shift of the radar signal which is proportional to the velocity of the object from which

the beam is reflecting. As seen in Figure 2(b), this instantaneous frequency may

be numerically estimated using a common tool of time-frequency analysis called the

spectrogram. By taking the ridgeline of this spectrogram, that is, by determining

the dominant frequency in the signal at any given time, we produce the curve seen in

Figure 2(c). As this ridgeline provides a good numerical approximation of the velocity

2



of the subject at any given time, this signal must be further analyzed for the detection

of breaths and heartbeats. In paricular, as breathing and the beating of the heart

cause periodic motions, the ridgeline in Figure 2(c) may be time-frequency analyzed

using a spectrogram, as in Figure 2(d). This second time-frequency analysis serves to

separate gross motion (the subject walking towards or from the radar) from periodic

motion (heartbeats, breathing, and gait). In this particular example, the subject was

at rest, and so only heart and breath motions were registered. In particular, as seen

in Figures 2(b) and (d), the subject is breathing between 10 and 40 seconds and

between 55 and 100 seconds. It is clear from Figure 2(d) that the subject’s breath

rate is about 0.3 Hz, meaning the subject takes almost one breath every 3 seconds.

Similary, as seen in Figures 2(b) and (d), the subject is holding his breath between

40 and 55 seconds. From Figure 2(d), the subject’s heart rate is about 1 Hz, meaning

the subjects heart beats about once every second.

The goal of this research is to improve the analysis presented in Figure 2. In

particular, we develop a Toeplitz matrix-based, FFT implemented method for quickly

computing a signal close to, but less noisy than, the ridgeline in Figure 2(c). This

approach completely bypasses the need to compute the first spectrogram in Figure

2(b), and provides cleaner data to the second spectral analysis in Figure 2(d). These

improvements make it possible to process radar data in real-time using standard

hardware and, more significantly, determine the heart rate even when the subject is

not holding his breath.

Real-life applications of this theory include the areas of security and ground

combat. For example, a high heart and breath rate would alert security personnel to

consider having the subject undergo additional screening. In terms of ground combat,

being able to identify the living from the dead at large distances would better inform

commanders in further mission planning.

We begin in Chapter II with a short review of time-frequency analysis, Terahertz

radar, and heart and breath rate detection literature. In Chapter III, we take a closer

3
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(c) The ridgeline of (b), which represents the
dominant frequency at any time, is a quan-
tity which estimates the Doppler shift in the
radar signal at any given time. The ridgeline
should be a close approximation of the veloc-
ity signal. The large sinusoidal motion, seen
from 10 to 40 seconds and from 55 to 100 sec-
onds, corresponds to the subject’s breathing.
The portion of the ridgeline between 40 and
55 seconds has a higher frequency and is a re-
sult of the subject holding his breath, showing
only motion caused by the heart.

(d) The spectrogram of the velocity signal (c)
should show the periodic components related
to heart and breath motion. Here we can see
that between 40 and 55 seconds, the subject
is holding his breath. During this time, we
can more clearly see the subject’s heartbeat
at about 1 Hz, meaning the subject’s heart
beats about one time every second. We can
also see that the subject’s breath rate is about
0.3 Hz, meaning the subject takes almost 1
breath every 3 seconds.

Figure 2: Signal, its corresponding spectrogram, the ridgeline of the spectrogram, and
the spectrogram of the ridgeline.
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look at the THz radar system that provides the data for our time-frequency analysis.

We also review some of the major topics that are used throughout the thesis such as

the Fourier transform, the Doppler effect, and the windowed Fourier transform. The

advantages of using spectral centroids to extract heart and breath rate information

are also discussed. In Chapter IV, we introduce a new Toeplitz matrix-based approach

for the computation of spectral centroids, and also provide an algorithm that may be

used to implement this new approach. We conclude in Chapter V by validating the

algorithm on real-life data.
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II. Literature Review

2.1 Time-Frequency Analysis

Consider obtaining the individual densities of height and weight of a certain type

of animal. These densities tell us about the distribution of height and distribution

of weight. However, they do not tell us how height and weight are related, as this

would require joint density of height and weight. Likewise, a signal may not be

fully understood from simply obtaining its time energy density and frequency energy

density. For this reason, it became important to understand and devise a distribution

that represents the energy of a signal in both time and frequency. There are several

examples in everday life that relate to this idea of time-varying spectra. For example,

the frequency of light changes during sunset, the pitch in our voice changes as we

speak, and the notes a musician plays change over time [5].

One of the most commonly used methods for signals of non-stationary frequency

is the windowed Fourier transform. Suppose we were listening to an hour long flute

recital that had piano accompaniment. If we Fourier analyze the entire hour, we will

see frequency peaks in the spectrum corresponding to the flute and the piano. This

only tells us that the flute and piano were being played and does not tell us when they

were being played. Suppose we then break up the recital into five minute segments

and then Fourier analyze each segment. We can then determine in which five minute

segments the piano and/or flute were being played. Making the time intervals even

smaller, we can localize even better and therefore can determine exactly when the

flute and piano were being played [5]. To obtain this localized spectrum we multiply

the signal f(s) by the window g(s) centered at time s = t giving us:

fw(t, s) = f(s)g(s− t). (1)

Taking the Fourier transform of (1) gives us the short-time Fourier transform. As

noted in [1], using the window g(s) “allows localization of the spectrum in time, but

6



also smears the spectrum in frequency in accordance with the ‘uncertainty relation-

ship’, leading to a trade-off between time resolution and frequency resolution.”

One tool of time-frequency analysis is the spectral centroid, which measures the

spectral energy distribution of a signal. In [17], the spectral centroid is said to be

calculated as “the sum of the frequencies weighted by the amplitudes, divided by

the sum of the amplitudes, which is the first moment of spectrum with respect to

frequency.” In most applications, it is used to measure the distribution of a tone. The

spectral centroid can be used for musical instrument recognition, instrument sound

description, and auditory scene recognition, as seen in [8], [16], and [17].

We apply these ideas to a radar signal (electromagnetic wave) rather than to

a sound signal (pressure wave). More specifically, we apply these ideas to the signal

of a continuous-wave terahertz radar. Here, the changing frequency is caused by the

Doppler effect induced by the motion of the target. However, unlike many classical

radar applications, the target here is not an aircraft. Here, the target is a human

being, and the Doppler shift is caused by the motion of their body.

2.2 Terahertz Radar

2.2.1 History of Terahertz Radar. The term terahertz is applied to submil-

limeter wave energy that fills the wavelength range between 1 mm (300 GHz) and 100

µm (3 THz). The wavelength range between 1 cm (30 GHz) and 1 mm (300 GHz)

crosses into the millimeter-wave bands [18] and [20]. Throughout the last century, the

millimeter and submillimeter wave generation started to become a topic of interest

to scientists [6]. By 1984, the frequency range from 30 to 100 GHz was in a state of

advanced development, but above 100 GHz was still very exploratory. Wiltse said,

“Perhaps what is most needed is the invention of new sources that would provide

reasonable coherent power with simplicity and good efficiency at frequencies from 100

GHz into the submillimeter” [20]. By 2002, the terahertz frequency range was one of

the least explored regions of the electromagnetic spectrum [18].

7



2.2.2 Applications of Terahertz Radar. “The universe is bathed in terahertz

energy; most of it going unnoticed” [18]. From about 1990 to 2004, some of the

major applications of terahertz technology included applications in the areas of space

sciences, molecular spectroscopy, and plasma diagnostics. Around the beginning of

the 21st century, terahertz technology started expanding its applications to areas

such as biology and medicine. Some of these applications include disease diagnostics,

tumor recognition, and performing label-free DNA sequencing [19]. In 2002, Siegel

said, “All of these exciting applications and countless undiscovered ones remain in

wait while terahertz technology enters adulthood—it has been a long time coming

and there is still much work to be done” [18].

2.3 Heart and Breath Rate Detection

Whether it is simply monitoring an individual’s health, diagnosing chronic

health conditions, or even searching for humans in earthquakes or avalanches, be-

ing able to accurately detect heart and breath rates has a wide range of security

applications. There are many different methods to heart and breath rate detection.

Some of these methods are contact based and some are non-contact based. Almost all

of the papers discussing measuring an individuals heart and breath rates require some

type of frequency estimate. As technology becomes more advanced and the number

of biological and biomedical applications of radar are increasing, much of the recent

focus has been on non-contact methods.

2.3.1 Contact Methods. A person’s heart rate may be accurately measured

using an electrocardiogram (EKG). The muscles in one’s heart contract via electricity.

The electrocardiogram records this electrical activity over time. An example of the

EKG signal can be seen in Figure 3(a). Electrodes, or electrical contacts, are attached

to the skin and measure the electrical waves that pass through the body. Meanwhile,

a person’s breath rate may be measured using a respiration belt. The belt is strapped

around the abdomen or chest and then inflated. The changes in air pressure caused

8
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is around 0.25 Hz, meaning that the subject
takes about 1 breath every 4 seconds.

Figure 3: EKG and respiration belt signals and their corresponding spectrograms.
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by inhalation and exhalation are then recorded. An example of the respiration belt

signature can be seen in Figure 3(c). As seen in Figures 3(b) and (d), standard time-

frequency analysis of the EKG and pressure belt signals will reveal heart and breath

rates, respectively. From the spectrogram in Figure 3(b), we can see a dominant

frequency at slightly more than 1 Hz, indicating the subject’s heart beats about 1 time

per second. Also, we can see from the spectrogram in Figure 3(d) that the dominant

frequency occurs at about 0.25 Hz, indicating the subject takes approximately one

breath every four seconds.

Though invaluable medical tools, pressure belts and EKGs require sensors to

be attached to the subject, and as such, are inappropriate for the security checkpoint

and battlefield environments. Instead, for these situations, what is needed is a non-

contact method for measuring heart and breath rates. Indeed, as noted in [12]: “A

more promising way of detecting heart rate, are contact-free measurements through

radar: Radar waves are emitted and frequency analysis of the reflected signal from

human body reveals heart rate based on Doppler phenomena.” We now review the

existing technology to this end in detail.

2.3.2 Non-Contact Methods.

2.3.2.1 Micro-Impulse Radar (MIR). Micro-impulse radar (MIR) uses

short radar impulses which last for only a few nanoseconds. The goal is to shape a

“wearable heart rate sensing solution” which will operate in close proximity to the

user. “The radar unit is worn by the user without the need of placing any additional

sensor onto the body” [13]. The apparatus itself is detailed in [13]:

A MIR exists of several units. A pulse generator defines when the trans-
mitter should emit a pulse over the antenna. Simultaneously, the pulse-
generator activates a so-called delay line. This delay line is used for con-
trolling the sampling of the received echoes at the receiver: the receiver
is only activated at very short time intervals triggered by the delay-line.
Thus, the length of the delay-line ensures that only pulses back-scattered
from a certain distance are received. In the context of heart rate detection

10



the goal is to adjust the delay-line such that the receiver is activated only
if echoes from the heart wall can be expected.

The algorithm that uses MIR to extract heart rate has four steps: filtering, local

maxima detection, evaluation of distance between maxima, and division. Filtering

the radar signal according to:

x̃(ti+1) = Cx(ti+1) + (1− C)x(ti)

smoothes the data to allow better processing. In a signal sampled at about 80 Hz,

they found C = 0.15 to be an appropriate weight. The algorithm then finds local

maxima in the signal, and then calculates the distances (in time) between them.

These distances are then analyzed for regularly occurring patterns: “occurrences of a

distance four times or higher has proven as a reliable indication of a regularly occurring

maximum” [13]. Maxima with this distance are typically related to the heart rate. All

the remaining non-contact methods that we discuss are based on Doppler principles,

as is Dr. Petkie’s system.

2.3.2.2 Radar Vital Signs Monitor (RVSM). The Radar Vital Signs

Monitor, developed by researchers at Georgia Tech Research Institute, has been used

to measure human heart and breath rates at distances exceeding 10 meters. This radar

system operates in the continuous wave mode at 24.1 GHz. A mixer diode is used to

detect energy reflected from the target. When subject movement occurs, a Doppler

shift between the transmitted and received signals is present, and there is a change in

the phase between the transmitted and received signals. Part of this movement is the

result of the heart beats and breathing of the subject. The phase difference resulting

from this movement is then amplified and filtered. Several filters are applied to the

signal to separate the heart and breath rate signals: “the filter bandpass is specified

such that it can attenuate the respiration signature while allowing the fine resolution

heart signature to pass without inducing filter effects” [9]. The filter is designed so

that plasma modulation caused by fluorescent lights at 60 Hz is eliminated. Finally,
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the signal is then amplified and sent to a low impedance output stage. The respiration

channel is formed using a similar approach.

2.3.2.3 Microwave Techniques. Microwave radiation has been used in

many medical applications, such as for the diagnosis and monitoring of pulmonary

edema and other pathological cardiopulmonary conditions [15]. It has also been used

to record apexcardiograms, which indicate precordial movements [11]. Microwave

radiation can also be used to sense vital signs such as heart and breath rates. Coupled

with its ability to penetrate rubble, microwave-based devices can be used to locate

avalanche and earthquake victims.

One microwave technique [10] for measuring respiration is based on scattering

of continuous wave radiation, and operates at a frequency of 10 GHz. Once the signal

reaches the subject, it is modulated in amplitude and phase. This is a result of the

movement of the chest wall due to breathing. The scattered energy modulated by this

movement is detected by a crystal detector that is located on the receiving horn. The

ratio meter compares the amplitude with part of the forward signal that is detected

by a crystal located on the directional coupler. The instantaneous ratio between the

reference and scattered signals is measured by the ratio meter. The ratio meter then

outputs a voltage that has frequency corresponding to the breath rate.

Another technique [7] uses a microwave radio for sensing vital signs by Doppler

radar. To remove the DC component, the signal is filtered using a bandpass filter

between 0.03 Hz and 10 Hz. This filter also minimizes aliasing error and out-of-band

noise. After this filtering, the breath rate is clearly visible. Applying a low-pass filter

better resolves the respiration signal. To isolate the heart rate signal, a band-pass

filter between 1 Hz to 3 Hz with a 6 dB roll-off is applied to the signal. This method

can detect heart and breath rates at distances as large as one meter.

The microwave life-detection system provides applications such as locating earth-

quake and avalanche victims that are trapped under rubble. In [2], an “X-band mi-

crowave life-detection system” is discussed. This system was able to remotely detect
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the heart and breath rate signals of subjects at distances of 100 feet or located behind

a barrier wall. To detect the heart and breath rate signals, the system illuminates the

subject with a low-intensity microwave beam. As with the other Doppler schemes, the

small amplitude body-vibrations, caused by the breathing and heartbeat of the sub-

ject, modulate the backscattered microwave signal. The heart and breath rate signals

are then extracted from the backscattered signal by phase-detection in the microwave

receiving system. In this system, clutter from the rubble or surface of the ground was

cancelled using a very slow manual-adjustment process. This would not be practical

for real-world applications in emergency rescues where fast processing is essential [4].

To handle this problem, a new system with an automatic clutter-cancellation subsys-

tem was developed. The microwave life-detection system, discussed in [4], operates

at 2 or 10 GHz and remotely senses movements such as breathing and heartbeat.

The automatic clutter-cancellation subsystem uses a microprocessor-based control

unit to scan the attenuator and phase-shifter. This minimizes the input signal to

the microwave amplifier and therefore cancels the clutter component of the signal.

Experiments show that the 2 GHz system penetrated more rubble than the 10 GHz

system, concluding that lower frequencies will be more capable of detecting a human’s

vital signs through thick barriers. The 2 GHz system penetrated rubble of up to 3

feet of thickness.

As the previously mentioned life-detection systems were still not sufficient to

locate humans that could be buried deep in earthquake rubble or hidden behind very

thick barriers, a “new sensitive microwave life-detection system” was constructed.

This new system operated at 1150 or 450 MHz and was used to locate humans burried

under earthquake rubble or hidden behind very thick barriers of approximately 10 foot

thickness. These different frequencies had different advantages and disadvantages:

An EM wave of 1150 MHz can penetrate a rubble with layers of reinforced
concrete slabs with metallic wire mesh easier than that of 450 MHz. How-
ever, an EM wave of 450 MHz may penetrate deeper into a rubble without
metallic wire mesh than that of 1150 MHz. [3]
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The idea behind extracting the heart and breath rates is quite similar to the other

systems. After penetrating the rubble to reach the subject, the microwave beam

illuminates the human subject. The movement of the human body induces a Doppler

shift in the reflected wave. If the reflected wave from the background is cancelled and

the reflected wave from the human subject is properly demodulated, the heart and

breath rate signals can be extracted.

2.3.2.4 Heart Beat Monitoring by Laser Doppler Interferometry. An-

other non-contact method for heartbeat monitoring uses laser Doppler interferometry

to optically record the movements of the chest wall. This method allows measure-

ments for distances at tens of meters, and is based upon the fact that:

During ventricular contraction, the heart undergoes changes in volume as
well as variations in position. The resulting combination of motions is
transmitted to the surface of the skin and could be picked up by a laser
displacement sensor pointing at a point on the thorax, near the heart. [14]

A laser beam passes through a beam splitter, creating a measuring beam which focuses

on the vibrating object, and a second reference beam. Comparing the frequency of

the reflected beam to the reference beam, one computes a Doppler shift which, in a

manner similar to the technique above, may be further processed to determine heart

rate.
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III. Time-Frequency Analysis and Continuous Wave Radar

In this chapter, we introduce some of the major topics of time-frequency analysis. We

begin by taking a closer look at the actual radar system from which our real-world

data is obtained. We then focus on the areas of frequency and instantaneous frequency

including topics such as the Fourier transform, the Doppler effect, and the windowed

Fourier transform. In particular, we take a closer look at how the processing of analog

signals may be approximated by similar processing of their digital samples.

3.1 The Terahertz Radar System

Dr. Petkie’s radar system operates on principles similar to those of Michelson

interferometers and operates at either 120 or 240 GHz. Using “binary frequency

shifting,” the real-valued radar signal is preprocessed to produce a complex-valued

digital representation of the received radar signal.

Formally speaking, let us assume that the transmitter and receiver are located at

the origin. Let the target be defined at some point x(t) ∈ R. The signal transmitted

at time t can be defined as

ST (t) := e2πiαt, (2)

where the symbol “:=” denotes “defined as”. Here, α is the frequency of the trans-

mitted signal. In practice, α will be either 120 or 240 GHz. The signal received at

time t is assumed to be

SR(t) := e2πiα(t−2x(t)/c), (3)

or simply the signal transmitted at time t−2x(t)/c, where c is the speed of light. This

assumption is known as the start-stop approximation. The idea behind the assumption

is as follows: since the target is located at some point x(t), we expect the signal to

travel a distance of 2x(t), the distance from the transmitter to the target and then

back to the reciever. This signal is travelling at the speed of light and so the time it

takes to travel this distance is 2x(t)/c. So, a part of the signal received at a time t

was transmitted at a time t− 2x(t)/c. The reason this analysis is somewhat flawed is
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that the target itself is moving as the chest wall moves very slightly as a result of the

subject’s heart and breath motion. In particular, the wave does not actually travel

2x(t) units of distance, but rather 2x(τ) units of distance, where τ < t is the time

at which the wave bounced off the subject. However, as the speed of light is much

larger than the speed of the subject’s body, the assumption (3) is correct to a high

degree of accuracy. Note that in (3) we have also ignored the possibly time-varying

amplitude of the received signal, which in real-life applications is a result of changes

in radar cross-section.

From (3), the signal received at time t is equal to e2πi(αt−2λ−1x(t)), where λ = c/α

is the wavelength of the radar wave; for α = 300 GHz, λ = 1 mm. Once the radar

signal bounces off the subject, its energy is collected at the receiver. This analog

signal is then demodulated by mixing it with a reference signal or a local oscillator,

shifting the frequency α to zero. That is, the modulated received signal is

SMR(t) := e−2πiαtSR(t) = e−2πi(2λ−1x(t)). (4)

The real-world data we receive is essentially a digitally-sampled version of (4). In the

next section, we begin to discuss how a spectral analysis of this data may be used to

gain information about the subject. In particular, the velocity of the subject’s body

may be determined from (4) as a result of the Doppler effect. It turns out that the

target’s velocity ẋ(t) is proportional to the instantaneous frequency of SMR(t). We

conclude this section by discussing how (4) may also be used to generate simulated

data for the evaluation of heart and breath rate detection algorithms. In particular, for

a person at rest whose heart and breath rates are constant, x(t) may be approximated

as the sum of the target distance, a breath rate term, and a heart rate term. In

particular, we model the displacement x(t) of the person from the radar receiver as:

x(t) = β + γ1 sin(2πω1t)) + γ2δ(ω2t− τ), (5)

16



where β is the overall fixed distance from the person to the radar, γ1 is their breathing

displacement, ω1 is their breath rate, γ2 is their heartbeat displacement, ω2 is their

heart rate, τ is some heart rate shift, and δ is defined as:

δ(t) :=
γ2

1− 2a

(∣∣∣t− 1
2
− btc

∣∣∣− a+
∣∣∣∣∣∣t− 1

2
− btc

∣∣∣− a∣∣∣)
for a = 1/2−rω2, where r is their heartbeat radius, a horizontal scale parameter which

determines the width of the peaks in Figure 4(b).

Using the parameters in Table 1, we can model the displacement x(t) by (5)

and then model the modulated received signal SMR(t) by (4). The first 6.25 seconds

of the respiration signal γ1 sin(2πω1t)) can be seen in Figure 4(a). Figure 4(b) shows

the first 6.25 seconds of the heartbeat signal γ2δ(ω2t− τ). Figures 4(b) and (c) show

the first 6.25 seconds of x(t) and SMR(t).

Table 1: Parameters Used in Simulating Data in Figure 4

Name of Parameter Symbol Value
radar frequency α 240 gigahertz
maximum time 25 seconds
sampling rate 2 kilohertz
target distance β 8 meters

breathing displacement γ1 4.5 millimeters
breath rate ω1 0.23 breaths per second

heartbeat displacement γ2 0.7 millimeters
heart rate ω2 1 beat per second

heartbeat radius r 0.25 meters
heart rate shift τ 0 seconds

3.2 Frequency

Frequency can be defined as the number of instances a certain event occurs over

a given amount of time. As the frequency of an event may itself change over time,

time-frequency analysis, that is, the study of how the frequency of a signal changes

over time, has been developed. There are many ways to calculate the frequency of a

signal. For a purely sinusoidal signal, frequency is inversely related to the wavelength

17



0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5
Plot of the Respiration Signal

time (seconds)

(a) The simulated respiration signal from 0 to
6.25 seconds. The vertical axis is on a scale of
1 mm.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Plot of the Heartbeat Signal

time (seconds)

(b) The simulated heartbeat signal from 0 to
6.25 seconds. The vertical axis is on a scale of
0.1 mm.

0 1 2 3 4 5 6
7.995

7.996

7.997

7.998

7.999

8

8.001

8.002

8.003

8.004

8.005

Plot of x(t)

time (seconds)

(c) The sum of the target distance, the simu-
lated heartbeat signal (a), and the simulated
respiration signal (b) from 0 to 6.25 seconds.
This sum is denoted x(t). The vertical axis is
on a scale of 1 m.

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Plot of the Simulated Data

time (seconds)

(d) The real part of the simulated data from
0 to 6.25 seconds.

Figure 4: Simulated data.
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Figure 5: A sinusoidal curve and a sinusoidal curve with noise.

for a traveling wave. Another way to calculate frequency is to measure the time it

takes for an event to repeat (the period). The frequency of the event is then simply

the reciprocal of this time.

For example, one may use the distance between zero crossings of a real-valued

signal to estimate its frequency. To be precise, a zero crossing of a function f : R→ R

is a point at which the horizontal axis is crossed, the sign changes from positive to

negative or vice versa. For sinusoidal signals, a single period will contain two zero

crossings, this is illustrated in Figure 5(a). Even with a small amount of noise present,

it is not a good idea to use this method to calculate frequency, as the noise causes

many zero crossings to occur near a true zero crossing of the clean signal as seen

in Figures 5(b) and (c). In such a noisy environment, the frequency of a signal is

better estimated using a technique that sums together data of a relatively long period

of time, hopefully allowing some of this noise to cancel itself out. The canonical

example of such a technique is the Fourier transform.

To be precise, let us consider the function space:

L2(R) :=

{
f : R→ C

∣∣∣∣∣ f is Lebesgue measurable,

∞∫
−∞

|f(t)|2 dt <∞

}
,
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which is a Hilbert space under the inner product:

〈f, g〉 :=

∞∫
−∞

f(t)g(t) dt.

We use the space L2(R) as a model of the continuous radar signal. The Fourier

transform on L2(R) is the operator F : L2(R)→ L2(R), defined as:

(Ff)(x) :=

∞∫
−∞

f(t)e−2πixt dt

for all f ∈ L1(R) ∩ L2(R). For any given x ∈ R, the quantity (Ff)(x) represents the

degree to which the signal f contains a component whose frequency is x. Indeed, in

light of the Fourier inversion formula:

f(t) =

∞∫
−∞

(Ff)(x)e2πixt dx,

the values of Ff tell one how to decompose any f ∈ L2(R) as a sum of sinusoids.

Figure 6 illustrates just how superior the Fourier transform is compared to

counting zero crossings when it comes to estimating frequency. In particular, in Figure

6(a), we see a typical signal of Gaussian amplitude and near constant frequency. We

note the frequency of the clean signal may be either determined by counting zero

crossings or by computing its Fourier transform, as shown in Figure 6(b). However,

when the original signal is buried in noise, as in Figure 6(c), the zero crossing method

will fail to indicate the signal’s frequency, whereas this information is still discernible

in the Fourier domain (Figure 6(d)). This is not to say the Fourier transform is

perfect. Indeed, by integrating over the entire real line, the Fourier transform may

have the unfortunate effect of blending all of the signal’s frequencies together. As we

now discuss, the solution to this problem is to instead consider a windowed Fourier
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Figure 6: The advantage of using Fourier transforms versus counting zero crossings.

transform, which better permits one to estimate the signal’s frequency at any given

time.

3.3 Instantaneous Frequency

3.3.1 The Doppler Effect and Instantaneous Frequency. Consider analyzing

the frequencies of a signal whose frequencies are changing over time. Figure 7(a) shows

a portion of a simulated signal (4) that represents a signal that has been reflected off

of a person that was breathing at a constant rate. As the Fourier transform of this
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Figure 7: Comparing the Fourier transform with the windowed Fourier transform.

signal (Figure 7(b)) combines information from all times, it is difficult to tell what

the frequency of the signal is at any given moment. To remedy this problem, one may

compute the windowed Fourier transform of the signal, defined formally below, and

produce the spectrogram given in Figure 7(c). Indeed, from Figure 7(c), we can see

that the frequency of our simulated signal is changing over time. To be more precise,

however, we must first define what is meant by instantaneous frequency.

In particular, consider a particle travelling along the unit circle whose position

at any time t is e2πiγ(t). For any two distinct times t and t + h, the distance of the

point e2πiγ(t+h) from the point e2πiγ(t) along the arc of the circle is 2π[γ(t+ h)− γ(t)].

Since the total circumference of the unit circle is 2π, the net number of cycles made

by the point between the time t and time t+ h is

2π[γ(t+ h)− γ(t)]

2π
= γ(t+ h)− γ(t).

Dividing by the change in time, the average frequency, that is, the average number of

cycles made by this particle per unit of time is

γ(t+ h)− γ(t)

h
.
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The instantaneous frequency of e2πiγ(t) at t is then defined as the limit of these average

frequencies as the time interval h over which these averages are taken tends to zero.

That is, the instantaneous frequency of e2πiγ(t) at time t is defined to be the derivative

of γ(t) at t:

γ̇(t) = lim
h→0

γ(t+ h)− γ(t)

h
.

In the particular case of our continuous wave radar signal SR(t) = e2πiα(t−2x(t)/c), the

instantaneous frequency is

d

dt
α

(
t− 2x(t)

c

)
= α

(
1− 2ẋ(t)

c

)
. (6)

The Doppler shift is calculated by subtracting the constant frequency α of the trans-

mitted signal ST (t) from the instantaneous frequency of SR(t), that is:

Doppler shift = α

(
1− 2

c

d

dt
x(t)

)
− α

= −2
α

c

d

dt
x(t)

= −2ẋ(t)

λ
,

where λ is the wavelength of the transmitted signal. Thus, the Doppler shift in the

received radar signal is proportional to the target’s velocity. With respect to our

application, this means that we can determine the velocity of the subject’s body,

provided we can accurately measure the instantaneous frequency of our data at any

given time. However, as we noted above in Figure 7(b), the Fourier transform is

not always the best way to measure frequency as it blends together all frequency

information over all times. Instead, what is needed is a transform that computes

frequencies over shorter periods of time.

3.3.2 The Windowed Fourier Transform. Consider listening to an orchestra

which is composed of many musicians playing many notes simultaneously. An indi-

vidual hears the sum of all these notes being played. The purpose of time-frequency
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analysis is to undo this sum, that is, to determine what notes are being played at

which times.

The windowed Fourier transform is the standard tool used for such an analysis.

To be precise, for any t, x ∈ R, the modulation and translation operations on the

space L2(R) are the operators Mx, T t : L2(R)→ L2(R), that are defined as:

(Mxf)(s) := f(s)e2πixs, (7)

(T tf)(s) := f(s− t). (8)

For any fixed windowing function g ∈ L2(R), the windowed Fourier transform of

f ∈ L2(R) with respect to g is

(Wgf)(t, x) := 〈f, T tMxg〉

= 〈T −tf,Mxg〉

=

∞∫
−∞

f(s+ t)g(s)e−2πixs ds. (9)

That is, for any time t, the windowed Fourier transform translates f by a factor of −t,

then multiplies this function by g, and then takes the Fourier transform of the result.

When g is a Gaussian of standard deviation σ, the values (Wgf)(t, x) are essentially

the Fourier transform of the portion of f over (t− 3σ, t+ 3σ). As both t and x vary,

the windowed Fourier transform is an overcomplete representation of f ; a function

of one variable has been transformed as a function of two variables, the magnitude

of which may either be viewed as a surface (Figure 8) or, more conventionally, as a

color coded image (Figure 7(c)). In either case, by the Cauchy-Schwarz inequality,

one expects |(Wgf)(t, x)|2 = |〈f, T tMxg〉|2 to be large when f is a scalar multiple of

g, and be small otherwise. As T tMxg is essentially a bump function centered at t

and of frequency x, one therefore expects |(Wgf)(t, x)|2 to be large when f contains a

component of frequency x around time t, and to be zero otherwise. Indeed, as seen in
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the red sinusoidal curve in Figure 7(c), we see that the simulated data in Figure 7(a)

essentially has one dominant frequency at any given time, and that this frequency

itself changes sinusoidally over time.

We conclude by noting that even though the radar signal is analog, it is passed

through an A/D converter. Therefore, all we have are digital samples of the original

signal. For this reason, we need to do time-frequency analysis on a space of discrete

signals.

3.4 Time-Frequency Analysis of Digital Signals

We now turn to a formal analysis of this problem. Let f, g be continuous signals,

and let their digital samples fσ, gσ : Z→ C be defined:

fσ(n) = f(σn),

gσ(n) = g(σn),

where σ is equivalent to the inverse sampling rate. That is, f(σn) is the nth sample

of f and, similarly, g(σn) is the nth sample of g. The windowed version of the

analog signal is f(u)g(u − t). When the sampling rate σ−1 grows large, (9) may be

approximated by a sum, that is,

(Wgf)(t, x) ≈ σ
∞∑

n=−∞

f(σn+ t)g(σn)e−2πiσxn,

provided f and g are sufficiently smooth and have sufficient decay. In particular, for

t of the form t = σm for some m ∈ Z,

(Wgf)(σm, x) ≈ σ
∞∑

n=−∞

f(σn+ σm)g(σn)e−2πiσxn

= σ
∞∑

n=−∞

fσ(n+m)gσ(n)e−2πiσxn. (10)
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Equation (10) leads to a definition of a windowed Fourier transform on a space of

discrete signals, in particular, the space `2(Z).

To be precise, we note that since we only have discrete data, we will drop the

σ in our notation and from this point forward let f and g denote discrete functions,

and let

`2(Z) :=

{
f : Z→ C

∣∣∣∣∣
∞∑

n=−∞

|f(n)|2 <∞

}
,

which is a Hilbert space under the inner product

〈f, g〉 :=
∞∑

n=−∞

f(n)g(n).

In a manner similar to the space L2(R), one may define a windowed Fourier transform

on `2(Z) provided one first defines translation and modulation operators on these

spaces. In particular, we define the translation operation, Tn : `2(Z)→ `2(Z), as:

(Tnf)(m) := f(m− n),

where m,n ∈ Z. Also, we can define the modulation operation, Mx : `2(Z) → `2(Z),

as

(Mxf)(m) := f(m)e2πixm,

where m ∈ Z and x ∈ R. Note, however, that with respect to modulation, we have:

(Mx+nf)(m) := f(m)e2πixm
(
e2πim

)n
= f(m)e2πixm = (Mxf)(m),

that is Mx+n = Mx for all n ∈ Z. Thus, the modulation parameter x is most appro-

priately regarded as an element of the circle group T := R/Z. The Fourier transform

on `2(Z) is defined as F : `2(Z)→ L2(T),

(Ff)(x) =
∞∑

n=−∞

f(n)e−2πinx
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for all f ∈ `1(Z). Inspired by the definition of the continuous windowed Fourier

transform (9), and the relation (10), for any fixed g ∈ `2(Z), we define the windowed

Fourier transform of f ∈ `2(Z) with respect to g as:

(Wgf)(n, x) : = 〈f,TnMxg〉

=
〈
T−nf,Mxg

〉
=

∞∑
m=−∞

f(m+ n)g(m)e−2πixm. (11)

In terms of this notation, (10) becomes: (Wgf)(σm, x) ≈ σ(Wgf)(m,σx). Having

discussed how the analog windowed Fourier transform may be discretized, we now

turn to the fundamental tool of time-frequency analysis: the spectrogram.

3.5 Spectrograms

The spectrogram of f ∈ L2(R) with respect to some window g ∈ L2(R) is the

square of the modulus of the windowed Fourier transform of f with respect to g, that

is |(Wgf)(t, x)|2. The spectrogram of a signal shows how the frequency content of

that signal varies over time. Being a function of two variables, the spectrogram may

be viewed as a surface, as in Figure 8. More commonly, the spectrogram is depicted

as an image, where the magnitude of |(Wgf)(t, x)|2 is indicated by the color of the

pixel, as in Figure 7(c).

When viewing the spectrogram as a surface, one sees peaks and valleys. Peaks

correspond to large values of |(Wgf)(t, x)|2, that is, the time t at which f has an espe-

cially large component which is oscillating at frequency x. Indeed, for any given time

t, one may find the particular x’s for which the value of |(Wgf)(t, x)|2 is maximized,

that is, the frequency that is most present in f at time t. Writing these dominant

frequencies as a function of t, one produces a curve known as the ridgeline of the spec-

trogram, as it corresponds to the crests of the hills of the surface |(Wgf)(t, x)|2. To be

precise, the ridgeline of the spectrogram |(Wgf)(t, x)|2 is the function Rgf : R→ R,
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Figure 8: Three-dimensional view of Figure 7(c).

where

(Rgf)(t) := argmax
x∈R

|(Wgf)(t, x)|2. (12)

Though a standard tool of time-frequency analysis, the ridgeline (12) of a spec-

trogram still leaves much to be desired. For instance, for signals which contain multi-

ple frequency components at any given time, the ridgeline may be discontinuous. In

particular, the ridgeline will have a jump discontinuity whenever one frequency peak

rises above another. Such jump discontinuities are especially troubling for our heart

and breath rate application, in which the ridgeline (12) serves as an estimate of the ve-

locity of the subject’s body. In particular, to detect the periodic motions of the heart

and lungs, one needs to subject the velocity signal itself to a time-frequency analysis.

Here, any jump discontinuities will manifest themselves as noise which could possibly

drown out the relatively weak heartbeat component. In short, when using the ridge-

line as our velocity signal, experimentation has revealed the heartbeat component of

the signal to have a dangerously small signal-to-noise ratio. Because of this, we aban-
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doned the use of the ridgeline as a velocity estimate, and instead began to use spectral

centroids. In particular, for any fixed time t ∈ R, we may regard the corresponding

vertical strip of the spectrogram |(Wgf)(t, x)|2 as a distribution over the real line.

Indeed, considering the definition (9) of the windowed Fourier transform, the values{
|(Wgf)(t, x)|2

}
x∈R give the spectral energy density of the function f(s+ t)g(s). The

centroids (centers of mass) of these distributions may themselves be viewed as func-

tions of time. To be precise, the centroid of the spectrogram |(Wgf)(t, x)|2 is the

function Cgf : R→ R, where

(Cgf)(t) :=

∞∫
−∞

x|(Wgf)(t, x)|2 dx

∞∫
−∞
|(Wgf)(t, x)|2 dx

. (13)

As noted in the previous section, the actual data we receive is discrete-time, that

is, digital samples of the analog radar signal. This poses no serious problem for

the ridgeline (12) and centroid (13) definitions introduced above for analog signals.

Indeed, as the windowed Fourier transform for discrete signals was generalized to the

discrete case in (11), we define the discrete spectrogram of f ∈ `2(Z) as |(Wgf)(n, xj)|2,

where n ∈ Z, and {xj}Jj=1 is some fixed finite set of real numbers. In this setting, the

ridgeline is then

(Rgf)(n) := argmax
j=1,...,J

|(Wgf)(n, xj)|2 (14)

and the centroid is then

(Cgf)(n) :=

J∑
j=1

xj|(Wgf)(n, xj)|2

J∑
j=1

|(Wgf)(n, xj)|2
. (15)
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In particular, using the fact that for any differentiable function z : R → C, we

have:
d

dt
|z(t)|2 = z(t)z′(t) + z′(t)z(t) = 2Re

[
z(t)z′(t)

]
,

we can evaluate the derivative of the numerator of (13) with respect to t as

d

dt

∞∫
−∞

x |(Wgf)(t, x)|2 dx =

∞∫
−∞

x

[
d

dt
|(Wgf)(t, x)|2

]
dx

=

∞∫
−∞

2xRe

[
(Wgf)(t, x)

d

dt
(Wgf)(t, x)

]
dx, (16)

where the remaining derivative of (Wgf)(t, x) in (16), is given by

d

dt
(Wgf)(t, x) =

d

dt

∞∫
−∞

f(s+ t)g(s)e−2πixs ds

=
d

dt

∞∫
−∞

f(s)g(s− t)e−2πix(s−t) ds

=

∞∫
−∞

f(s)e−2πixs

[
d

dt
g(s− t)e2πixt

]
ds.

Thus, we expect the numerator of (13) to be differentiable as long as g(s − t)e2πixt

is, and as e2πixt is infinitely differentiable, the smoothness of (Wgf)(t, x) is truly

dependent upon the smoothness of g.

A similar argument shows that the denominator of (13) is also differentiable,

and so (13) itself will be differentiable whenever its denominator is nonzero, which,

according to the Parseval-Plancherel identity will happen whenever f(s + t)g(s) is

not identically zero. We note that being only an informal derivation, we shall not

formally justify the interchanging of the derivative and the integral above in (16).

To summarize, though the ridgeline (12) is not continuous, in general, one should

expect the centroid (13) to be differentiable, provided g satisfies mild smoothness as-
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sumptions. We note that even though the above analysis only applies to the analog

ridgeline (12) and centroid (13), we nevertheless expect a similar result to hold in

the discrete case for the ridgeline (14) and centroid (15), provided one first appropri-

ately defines what is meant by the smoothness of a discrete function. Thus “discrete

smoothness” seems to be highly dependent on the vertical resolution of the spectro-

gram, that is, at how many frequencies {xj}Jj=1 the spectrogram is computed.

Indeed, consider the spectrogram in Figure 9(a), which was the result of using a

windowed Fourier transform on a 60 second sample of 120 GHz CW radar data. Both

the ridgeline and the spectral centroid, seen in Figures 9(b) and (d), respectively,

were easily computed from Figure 9(a). As the radar signal had only one dominant

frequency at any given time, these two curves are nearly identical, a fact which may

be further confirmed by comparing their spectrograms, as seen in Figures 9(c) and

(e). Meanwhile, when the vertical resolution of the spectrogram is decreased, as in

Figure 10(a), the differences in smoothness between the ridgeline and the centroid

become very apparent. Indeed, as the discrete ridgeline (14) produces an index j =

1, . . . , J , it may appear heavily overquantized when J is small, as seen in Figure 10(b).

Meanwhile, the centroid curve derived from the same data, is still relatively smooth,

as seen in Figure 10(d). This is because the centroid is a weighted average of the xj’s,

rather than just picking whichever one is largest. As noted above, with respect to our

particular application of heart and breath rate detection, this difference in smoothness

is critical. In particular, the spectrogram of the centroid curve (Figure 10(e)) exhibits

well-defined horizontal strips around 0.3 Hz and 1 Hz, indicating breath and heart

rates, respectively. Meanwhile, the spectrogram of the ridgeline signal (Figure 10(c))

is much more noisy, making it difficult to accurately determine the heart and breath

rates.

To summarize, the discrete ridgelines (14) and discrete centroids (15) seem com-

parable when the frequency resolution is high, that is, when the xj’s are closely spaced.

Meanwhile, the centroid seems to dramatically outperform the ridgeline when the xj’s

are coarse. Importantly, as the length of time needed to compute the discrete spectro-
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(a) The spectrogram of a 120
GHz radar signal that was
sampled at 1 kHz. This spec-
trogram was computed over
frequencies with high resolu-
tion.
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(b) The ridgeline of (a) over
a 20 second interval, which
measures the Doppler shift at
a given time. Since (a) was
computed over high resolution
frequencies, we get a smooth
ridgeline.

(c) The spectrogram of the
ridgeline. Since (a) was com-
puted over frequencies with
high resolution, we get a
smooth signal in (b) that gives
a spectrogram from which we
can extract heart and breath
rate information. The horizon-
tal strip around 0.3 Hz rep-
resents the breath rate of the
subject while the faint horizon-
tal strip around 1 Hz repre-
sents the heart rate.
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(d) The spectral centroids of
(a) over a 20 second interval,
which gives us another way to
measure the Doppler shift at a
given time. We see that since
the frequency resolution is high
in (a), this signal is similar to
that of the ridgeline (b). We
get a smooth, well-behaved sig-
nal by taking the centroids of
the vertical strips of (a).

(e) The spectrogram of (d),
gives us heart and breath rate
information. This spectrogram
is similar to (c) since the spec-
trogram of the radar signal
was computed over high res-
olution frequencies, giving us
a smooth ridgeline signal (b)
that is very similar to the cen-
troid signal (d). Again, the
horizontal strip around 0.3 Hz
represents the breath rate of
the subject while the faint hor-
izontal strip around 1 Hz rep-
resents the heart rate.

Figure 9: Comparing the ridgeline and centroid of a spectrogram that was computed
over frequencies with high resolution.
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(a) The spectrogram of a 120
GHz radar signal that was
sampled at 1 kHz. This spec-
trogram was computed over
frequencies with coarse resolu-
tion.
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(b) The ridgeline of (a) over a
20 second interval, which mea-
sures the Doppler shift at a
given time. Since (a) was com-
puted over coarse resolutions
for frequency, our ridgeline is
overquantized.

(c) The spectrogram of the
ridgeline, which should provide
information about the heart
and breath rates of the subject.
However, since (b) is overquan-
tized, we get an ambiguous re-
sult.
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(d) The spectral centroids of
(a) over a 20 second interval,
which gives us another way to
measure the Doppler shift at
a given time. Even though
(a) is very coarse, we get a
smooth, well-behaved signal by
taking the centroids of the ver-
tical strips of (a).

(e) The spectrogram of (d),
which is much clearer than (c),
gives us heart and breath rate
information. The horizontal
strip around 0.3 Hz represents
the breath rate of the subject
and the horizontal strip around
1 Hz represents the heart rate.

Figure 10: Comparing the ridgeline and centroid of a spectrogram that was computed
over frequencies with coarse resolution.
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gram |(Wgf)(n, xj)|2 grows linearly with J , this smoothness advantage translates into

a speed advantage. In the main results of this research, presented in the next chapter,

we show that this speed advantage may be made even more pronounced. In partic-

ular, whereas the computation of the ridgeline necessitates that one first compute

the spectrogram |(Wgf)(n, xj)|2 for all n ∈ Z and j = 1, . . . , J , in the next section,

we show how the discrete centroid (15) may be computed without ever needing to

compute |(Wgf)(n, xj)|2 explicitly. That is, though both Figures 10(b) and (d) may

be computed from Figure 10(a), it turns out that Figure 10(b) must be computed this

way, whereas a computational trick will allow us to compute Figure 10(d) directly us-

ing FFT’s. In short, for the purposes of heart and breath rate detection, the centroid

is much cleaner than the ridgeline, and, as shown in the next chapter, may actually

be computed faster than the ridgeline, that is, we show that a better signal can be

obtained at a lower cost.

We conclude this section by performing a time-frequency analysis on our simu-

lated data generated using the data model discussed in Section 3.1. In so doing, we

get some preliminary idea as to what our data should look like. Figure 11(a) shows

x(t) and Figure 11(b) shows the simulated data SMR(t) for a 32 second sample. The

spectrogram of the simulated data is shown in Figure 11(c). This spectrogram shows

us what frequencies are present at what time and is proportional to the velocity of the

target. Figure 11(d) shows the ridgeline of Figure 11(c), which represents the domi-

nant frequency at any time. The ridgeline is a quantity which estimates the Doppler

shift in the radar signal at any given time and should be a close approximation of

the velocity signal. Figure 11(e) shows the centroids of the spectrogram of the radar

signal. The centroids give us another way to measure the Doppler shift at a given

time and are smooth and well-behaved. These centroids can be computed from Fig-

ure 11(c) or directly from Figure 11(b) using the ideas presented in the next chapter.

Figure 11(f) shows the spectrogram of Figure 11(e), which indicates a breath rate of

0.23 Hz, and a heart rate of 1 Hz, where the harmonic at 2 Hz is a result of the peaks
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in the heartbeat signal. That is, we obtain the numbers ω1 and ω2 in Table 1 that

were used to generate the data in the first place.

We conclude this chapter with a discussion of topics of discrete Fourier analysis,

such as the FFT and circular convolutions. Though not directly applicable to the

above ideas, these concepts shall become important in the algorithmic implementation

of our main results in the following chapter.

3.6 Time-Frequency Analysis of Periodic Digital Signals

For any positive integer N , the set of integer-indexed, N -periodic, complex-

valued sequences is

`(ZN) := {f : Z→ C | f(n+N) = f(n) ∀n ∈ Z},

which is a Hilbert space under the inner product

〈f, g〉 =
∑
n∈ZN

f(n)g(n).

Here, the summation over ZN denotes a sum of the coset representatives of Z over

NZ, that is, any set of indices congruent to {0, . . . , N − 1} modulo N . The Fourier

transform is F : `(ZN)→ `(ZN):

(Ff)(m) =
∑
n∈ZN

f(n)e−2πimn/N . (17)

This discrete Fourier transform is often referred to as the Fast Fourier Transform

(FFT), as it may be implemented in a suprisingly fast manner. In particular, whereas

a direct implementation of (17) requires O(N2) operations, the FFT algorithm, as we

now discuss, permits (17) to be evaluated in O(N logN) operations.

3.6.1 The Fast Fourier Transform. Any integer can be written as a product

of its primes. In our computations, we shall always use integers of the form N = 2k
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(a) The distance x(t) (in me-
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(b) The real part of the simu-
lated data SMR(t).

(c) The spectrogram of (b),
which shows us what frequen-
cies are present at what times.
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tional to the velocity of the tar-
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0 5 10 15 20 25 30

−15

−10

−5

0

5

10

15

time (seconds)

fr
e

q
u

e
n

cy
 (

H
z)

Ridgeline from Spectrogram

(d) The ridgeline of (c), which
represents the dominant fre-
quency at any time, is a
quantity which estimates the
Doppler shift in the radar sig-
nal at any given time. The
ridgeline should be a close ap-
proximation of the velocity sig-
nal.
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(e) The spectral centroids of
(b), which gives us another way
to measure the Doppler shift
at a given time. We get a
smooth, well-behaved signal by
taking the centroids of the ver-
tical strips of (c). In fact, us-
ing a computational trick de-
veloped in Chapter IV, we can
compute the spectral centroids
without computing (c) explic-
itly.

(f) The spectrogram of (e),
gives us heart and breath rate
information. The horizontal
strip around 0.25 Hz represents
the breath rate of the subject
and the horizontal strip around
1 Hz represents the heart rate.
From our data simulation, we
expect the breath rate to be
0.23 breaths per second and
the heart rate to be 1 beat per
second.

Figure 11: Time-frequency analysis of the simulated data and its centroids
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for some k ∈ N. Letting f ∈ `(ZN), the Fourier transform of f is

(Ff)(m) =
∑
n∈ZN

f(n)e−πimn/N

=
N−1∑
n=0

f(n)e−2πimn/N

=

N
2
−1∑

p=0

f(2p)
[
e−2πim2p/N + f(2p+ 1)e−2πim(2p+1)/N

]

=

N
2
−1∑

p=0

f(2p)e−2πimp/(N/2) + e−2πim/N

N
2
−1∑

p=0

f(2p+ 1)e−2πimp/(N/2)

= (Ff0)(m) + e−2πim/N(Ff1)(m), (18)

where f0, f1 ∈ `(ZN/2) are the even and odd components of f , respectively, defined

as f0(p) := f(2p), f1(p) := f(2p + 1). We see that a discrete Fourier transform of

size N may be written as two Fourier transforms of size N/2 along with N additional

multiplications. Letting op(N) denote the number of operations needed to evaluate

a discrete Fourier transform of size N , (18) gives that op(N) ≤ N + 2op(N/2). This

then implies that op(2k) ≤ k2k. Indeed, by induction, we know this is true for k = 1,

and assuming it is true for a given k, then

op(2k+1) ≤ 2k+1 + 2op(2k) ≤ 2k+1 + 2k2k = (k + 1)2k+1.

Put another way, for N = 2k, we have op(N) ≤ N log2N . We now turn to the main

application of the FFT that we shall employ, namely its ability to permit a very fast

evaluation of circular convolutions.

3.6.2 Convolutions. The circular convolution of f, g ∈ `(ZN) is f ∗ g ∈

`(ZN):

(f ∗ g)(m) :=
∑
n∈ZN

f(m− n)g(n). (19)
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Under the action of the discrete Fourier transform, a convolution becomes a pointwise

product:

[F(f ∗ g)](p) =
∑
m∈ZN

(f ∗ g)(m)e−2πimp/N

=
∑
m∈ZN

∑
n∈ZN

f(m− n)g(n)e−2πimp/N

=
∑
m∈ZN

f(m− n)e−2πi(m−n)p/N
∑
n∈ZN

g(n)e−2πinp/N

= (Ff)(p)(Fg)(p),

that is,

(f ∗ g) = F−1[F(f)F(g)]. (20)

Calculating the convolution directly using (19) takes N2 operations, whereas calcu-

lating the convolution using (20) takes N logN operations. That is, by calculating

our convolutions using FFT’s, we can save time, which is especially important when

N is large.

3.6.3 Computing Discrete Spectrograms. In the previous sections, we have

defined windowed Fourier transforms on both L2(R) and `2(Z). In fact, one may

also perform a similar analysis on `(ZN). In particular, defining translation and

modulation operators as Tn,Mm : `(ZN)→ `(ZN):

(Tnf)(m) := f(m− n),

(Mmf)(n) := f(n)e2πimn/N ,

we define the discrete windowed Fourier transform as

(Wgf)(n,m) := 〈f,TnMmg〉

=
∑
l∈ZN

f(l + n)g(l)e−2πilm/N .
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We now show how using FFT’s we can compute the spectrogram in two different

ways. In the first method, we can compute the spectrogram for all frequencies and

some given times. In particular, letting f, g ∈ `(ZN) and m,n ∈ ZN , we have:

(Wgf)(m,n) = 〈f,TmMng〉

= 〈T−mf,Mng〉

=
∑
p∈ZN

(T−mf)(p)(Mng)(p)

=
∑
p∈ZN

f(p+m)e−2πinp/Ng(p)

=
∑
p∈ZN

[f(p+m)g(p)]e−2πinp/N

= [F((T−mf)g)](n).

That is, for any fixed m, we may compute (Wgf)(m,n) for all n ∈ ZN as the FFT of

(T−mf)g. This approach works well if we wanted to compute the spectrogram over

all frequencies for just a few times. However, as our data tends to exist over long

periods of time, but is only nonzero for a few frequencies, this is not our best choice.

Instead, we may use a second method:

(Wgf)(m,n) = 〈f,TmMng〉

=
∑
p∈ZN

f(p)(TmMng)(p)

=
∑
p∈ZN

f(p)(Mng)(p−m)

=
∑
p∈ZN

f(p)(̃Mng)(m− p)

= [f ∗ (̃Mng)](m), (21)

where f̃(n) := f(−n) is the involution of f . Unfortunately, (21) is itself not a great

method, as it involves knowing f at all times. In particular, (21) is not a real-time
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method. Thus, both of these “immediate” applications of the FFT to our time-

frequency analysis problem are inappropriate.

In Chapter IV, we introduce a new application of the FFT to time-frequency

analysis, one which suits our heart and breath rate application well. In particular, we

show how the spectral centroids, discussed above in Section 3.5, may be computed

directly using Toeplitz matrices. Multiplication by these matrices, in turn, may be

expressed in terms of circular convolutions, which, as noted above, may be quickly

implemented using FFT’s.
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IV. A New Method for Computing Spectral Centroids

In the previous chapter, we discussed the spectrogram, which is a fundamental tool of

time-frequency analysis. We also discussed that, for the purpose of heart and breath

rate detection, taking spectral centroids of the radar signal’s spectrogram yields a

smoother estimate of the velocity signal than that provided by the spectrogram’s

ridgeline. In this section, we prove that spectral centroids have an additional im-

portant advantage over ridgelines: speed. In particular, we will show that spectral

centroids of a spectrogram can be computed without ever needing to explicitly com-

pute the spectrogram itself. In fact, we will show that spectral centroids may be

directly computed from a signal using an FFT-implemented, Toeplitz matrix-based

algorithm.

4.1 Weighted Spectral Sums

Theorems 4.1.1 and 4.1.3 are the most fundamental original results in this the-

sis. Theorem 4.1.1 shows how weighted sums of the vertical strips of a discrete spec-

trogram may be computed as a Toeplitz matrix multiplication. A classical result,

summarized in Lemma 4.1.2, shows how such a multiplication may be written as a

circular convolution, which may then be evaluated using FFT’s. The implications of

these two results are then explicitly determined in Theorem 4.1.3, which provides the

foundations for a fast algorithm for the computation of spectral centroids, as discussed

in Section 4.2.

Theorem 4.1.1. For any weighting function w : R → R, any fixed frequencies

{xj}Jj=1 ⊂ R, any window g ∈ `2(Z) with g(n) = 0 whenever |n| > N , and any

f ∈ `2(Z), we have:
J∑
j=1

|(Wgf)(n, xj)|2w(xj) = z∗Az, (22)

where z ∈ C2N+1 has entries:

zk = f(k + n−N − 1)g(k −N − 1),
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and A is the (2N + 1)× (2N + 1) Toeplitz matrix whose (k, k′)th entry is:

Ak,k′ =
J∑
j=1

w(xj)e
2πixj(k−k′).

Proof. By the definition (11) of the discrete windowed Fourier transform,

|(Wgf)(n, xj)|2 =
∞∑

m=−∞

f(m+ n)g(m)e−2πixjm

∞∑
m′=−∞

f(m′ + n)g(m′)e−2πixjm′

=
∞∑

m=−∞

∞∑
m′=−∞

f(m+ n)g(m)e2πixj(m
′−m)f(m′ + n)g(m′).

Since g(n) = 0 for all n ∈ Z such that |n| > N , then

|(Wgf)(n, xj)|2 =
N∑

m=−N

N∑
m′=−N

f(m+ n)g(m)e2πixj(m
′−m)f(m′ + n)g(m′). (23)

Using (23), we have:

J∑
j=1

|(Wgf)(n, xj)|2w(xj) (24)

=
N∑

m=−N

N∑
m′=−N

f(m+ n)g(m)

(
J∑
j=1

w(xj)e
2πixj(m

′−m)

)
f(m′ + n)g(m′)

=
N∑

m′=−N

f(m′ + n)g(m′)
N∑

m=−N

(
J∑
j=1

w(xj)e
2πixj(m

′−m)

)
f(m+ n)g(m). (25)

Letting z ∈ C2N+1 be taken as it is in the statement of the result, note that we have

zm+N+1 = f(m+N + 1 + n−N − 1)g(m+N + 1−N − 1) = f(m+ n)g(m)
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whenever m+N + 1 = 1, . . . , 2N + 1, that is, whenever m = −N, . . . , N . Thus, (25)

may be written in terms of z as:

J∑
j=1

|(Wgf)(n, xj)|2w(xj) =
N∑

m′=−N

zm′+N+1

N∑
m=−N

(
J∑
j=1

w(xj)e
2πixj(m

′−m)

)
zm+N+1. (26)

Making the changes of variables k = m+N+1, k′ = m′+N+1 for m,m′ = −N, . . . , N ,

and recalling the definition of A given in the statement of the result, (26) becomes

J∑
j=1

|(Wgf)(n, xj)|2w(xj) =
2N+1∑
k′=1

zk′

[
2N+1∑
k=1

(
J∑
j=1

w(xj)e
2πixj((k

′−N−1)−(k−N−1))

)
zk

]

=
2N+1∑
k′=1

zk′

[
2N+1∑
k=1

(
J∑
j=1

w(xj)e
2πixj(k

′−k)

)
zk

]

=
2N+1∑
k′=1

zk′

(
2N+1∑
k=1

Ak′,kzk

)

=
2N+1∑
k′=1

zk′(Az)k′

= z∗Az.

To show the matrix A is Toeplitz, we must show that A is constant along diagonals,

that is, Ak+1,k′+1 = Ak,k′ for all k, k′ = 1, . . . , 2N . From (25),

Ak+1,k′+1 =
J∑
j=1

w(xj)e
2πixj(k+1−(k′+1))

=
J∑
j=1

w(xj)e
2πixj(k−k′)

= Ak,k′ .

Theorem 4.1.1 shows how weighted sums of vertical strips of a discrete spectro-

gram may be written as a quadratic form involving a Toeplitz matrix. We now present

a classical result which shows how Toeplitz matrix multiplication may be written in
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terms of circular convolutions, which, as described in Section 3.6, have an FFT-based

implementation.

Lemma 4.1.2. If A ∈ CK×K is Toeplitz, then for any non negative integer P ,

(Az)k = (ψzp ∗ ϕzp)(k − 1)

for all z ∈ CK and all k = 1, . . . , K, where ψzp, ϕzp ∈ `(Z2K−1+P ),

ψzp(k) =

 ψ(k), k = −K + 1, . . . , K − 1,

0, else,

ϕzp(k) =

 ϕ(k), k = 0, . . . , K − 1,

0, else,

where ψ and ϕ are given by:

Ak,k′ = ψ(k − k′), zk = ϕ(k − 1),

for all k, k′ = 1, . . . , K.

Proof. For any k = 1, . . . , K,

(ψzp ∗ϕzp)(k− 1) =
∑

k′∈Z2K−1+P

ψzp(k− 1−k′)ϕzp(k′) =
K−1∑
k′=0

ψzp(k− 1−k′)ϕ(k′). (27)

Since k = 1, . . . , K then for any k′ = 0, . . . , K − 1 we have:

−K + 1 ≤ k − 1− k′ ≤ K − 1,
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and so we may continue to simplify (27) as:

(ψzp ∗ ϕzp)(k − 1) =
K−1∑
k′=0

ψ(k − 1− k′)ϕ(k′)

=
K∑
k′=1

ψ(k − k′)ϕ(k′ − 1)

=
K∑
k′=1

Ak,k′zk′

= (Az)k.

Having demonstrated the straightforwardness of this classical result, we now

combine it with our original result (Theorem 4.1.1) to produce a new result which

forms the foundation of our spectral centroid-computing algorithm given below in

Section 4.2:

Theorem 4.1.3. For any weighting function w : R → R, any fixed frequencies

{xj}Jj=1 ⊂ R, any window g ∈ `2(Z) with g(n) = 0 whenever |n| > N , and any

f ∈ `2(Z), we have:

J∑
j=1

|(Wgf)(n, xj)|2w(xj) =
1

4N + 4

∑
m∈Z4N+4

(Fψzp)(m)|(Fϕzp)(m)|2,

where the discrete Fourier transform of ϕzp ∈ `(Z4N+4),

ϕzp(k) :=

 f(k + n−N)g(k −N), k = 0, . . . , 2N,

0, else,

may be computed numerically using FFTs while the discrete Fourier transform of

ψzp ∈ `(Z4N+4) may be computed symbolically as:

(Fψzp)(m) =
J∑
j=1

w(xj)D2N

(
2π
(
xj −

m

4N + 4

))
,
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where D2N : R→ R is the Dirichlet kernel of order 2N , namely:

D2N(x) :=
2N∑

k=−2N

eikx =
sin
((

2N + 1
2

)
x
)

sin(x/2)
. (28)

Proof. Letting A and z be defined as in the statement of Theorem 4.1.1, we apply

Lemma 4.1.2 to evaluate the matrix-vector product Az. Specifically, letting K =

2N + 1 and fixing P = 3, we have ϕzp ∈ `(Z4N+4) is:

ϕzp(k) =

 ϕ(k), k = 0, . . . , (2N + 1)− 1,

0, else,

=

 zk+1, k = 0, . . . , 2N,

0, else,

=

 f(k + n−N)g(k −N), k = 0, . . . , 2N,

0, else,

as claimed. Meanwhile, as the ψ in Lemma 4.1.2 is defined by the relation Ak,k′ =

ψ(k − k′), the definition of A in the statement of Theorem 4.1.1 implies that:

ψzp(k) =

 ψ(k), k = −(2N + 1) + 1, . . . , (2N + 1)− 1,

0, else,

=


J∑
j=1

w(xj)e
2πixjk, k = −2N, . . . , 2N,

0, else.

Under these particular definitions of ψzp and ϕzp, Lemma 4.1.2 now tells us that the

matrix-vector product Az of Theorem 4.1.1 may be written as a circular convolution.
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In particular, we have:

J∑
j=1

|(Wgf)(n, xj)|2w(xj) = z∗Az

=
2N+1∑
k=1

zk(Az)k

=
2N+1∑
k=1

ϕ(k − 1)(ψzp ∗ ϕzp)(k − 1)

=
2N∑
k=0

ϕ(k)(ψzp ∗ ϕzp)(k)

=
∑

k∈Z4N+4

ϕzp(k)(ψzp ∗ ϕzp)(k)

= 〈ψzp ∗ ϕzp, ϕzp〉.

To continue, we use the Parseval-Plancherel Identity for the discrete Fourier trans-

form, namely that F : `(ZN)→ `(ZN) satisfies F∗F = NI, and so for any f, g ∈ `(ZN)

we have 〈Ff,Fg〉 = 〈F∗Ff, g〉 = N〈f, g〉. In particular, applying this identity to

ψzp ∗ ϕzp, ϕzp ∈ `(Z4N+4), and using the fact that the discrete Fourier transform

distributes multiplicatively over convolutions (20) gives:

J∑
j=1

|(Wgf)(n, xj)|2w(xj) =
1

4N + 4
〈F(ψzp ∗ ϕzp),Fϕzp〉

=
1

4N + 4
〈(Fψzp)(Fϕzp),Fϕzp〉

=
1

4N + 4

∑
m∈Z4N+4

(Fψzp)(m)(Fϕzp)(m)(Fϕzp)(m)

=
1

4N + 4

∑
m∈Z4N+4

(Fψzp)(m)|(Fϕzp)(m)|2,

as claimed. To conclude, we need only note that as ψzp depends solely on the fixed

frequencies {xj}Jj=1 and the weighting function w, its discrete Fourier transform may
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be computed symbolically:

(Fψzp)(m) =
∑

k∈Z4N+4

ψzp(k)e−2πikm/(4N+4)

=
2N∑

k=−2N

J∑
j=1

w(xj)e
2πixjke−2πikm/(4N+4)

=
J∑
j=1

w(xj)
2N∑

k=−2N

e2πik(xj−m/(4N+4))

=
J∑
j=1

w(xj)D2N

(
2π
(
xj −

m

4N + 4

))
.

Having proven the main results of the thesis, we now show how they may be

implemented to the application of detecting heart and breath rates from terahertz

radar data. Specifically, we now consider how Theorem 4.1.3 may be used to produce

an algorithm which efficiently computes the centroids of vertical strips of a signal’s

spectrogram.

4.2 Spectral Moments

As discussed above in Section 3.5, the time-frequency estimate provided by the

centroid of the spectrogram, namely:

(Cgf)(n) :=

J∑
j=1

xj|(Wgf)(n, xj)|2

J∑
j=1

|(Wgf)(n, xj)|2
, (29)

is, in general, smoother than that provided by the spectrogram’s ridgeline (14). This

difference in smoothness is particularly noticeable when the spectrogram is only com-

puted over a coarse set of frequencies {xj}Jj=1. We now discuss, a second, crucial

advantage of centroids over ridgelines, namely how by Theorem 4.1.3, one may com-

pute the centroid curve (29) without ever needing to explicitly compute the values
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(a) Y1, the discrete Fourier
transform of ψzp where w(x) =
1 (vertical axis on a scale of
106).
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(b) Yx, the discrete Fourier
transform of ψzp where w(x) =
x (vertical axis on a scale of
107).
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(c) Yx2 , the discrete Fourier
transform of ψzp where w(x) =
x2 (vertical axis on a scale of
107).

Figure 12: The discrete Fourier transforms of ψzp for w(x) = 1, x, and x2.

(Wgf)(n, xj) themselves. As a consequence, we have experimentally found that by us-

ing our Theorem 4.1.3-based algorithm, we may actually compute the smooth centroid

signal (29) in much less time than it takes to compute the noisy ridgeline signal (14).

That is, using Theorem 4.1.3, we can get better results in less time. The key idea is

to notice that both the denominator and numerator of (29) may be computed using

Theorem 4.1.3 where w(x) is taken to be the constant function 1 and the linear func-

tion x, respectively. Indeed, it turns out that even more information about the signal

may be found by also applying Theorem 4.1.3 where w(x) is taken to be x2.

To be precise, let us assume that the frequencies {xj}Jj=1 and the window g

of Theorem 4.1.3 have been fixed. Our first step is to compute the discrete Fourier

transforms (Figure 12) of the three distinct ψzp’s we obtain by letting w(x) = 1, x

and x2, respectively. To do this, we first form the vectors {Xj}Jj=1 ∈ R4N+4 obtained

by evaluating the 2Nth Dirichlet kernel over Z4N+4:

Xj :=


D2N

(
2π
(
xj − 0

4N+4

))
D2N

(
2π
(
xj − 1

4N+4

))
...

D2N

(
2π
(
xj − 4N+3

4N+4

))

 .
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We then form three vectors Y1, Yx, Yx2 ∈ R4N+4 as linear combinations of the Xj’s:

Y1 :=
J∑
j=1

Xj, Yx :=
J∑
j=1

xjXj. Yx2 :=
J∑
j=1

x2
jXj.

By Theorem 4.1.3, these three vectors are precisely the discrete Fourier transforms

needed to produce:

J∑
j=1

|(Wgf)(n, xj)|2,
J∑
j=1

xj|(Wgf)(n, xj)|2,
J∑
j=1

x2
j |(Wgf)(n, xj)|2, (30)

respectively. We further note that Y1, Yx, Yx2 need only be computed once: in our

current MATLAB implementation, they are computed at the beginning of the algo-

rithm; they may also be computed in advance, stored offline, and simply read into

the code when needed. Having these vectors, we then compute the quantities (30)

(in real time) as follows: for any given time index n, we form the vector Zn ∈ C4N+4

obtained by zero-padding the values {f(n+m)g(m)}Nm=−N :

Zn :=



f(n−N)g(−N)
...

f(n+N)g(N)

0
...

0


.

That is, Zn is a vectorization of the function ϕzp ∈ `(Z4N+4) given in Theorem 4.1.3.

Letting |Ẑn|2 be the vector obtained by pointwise-squaring the modulus of the FFT
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Ẑn of Zn, Theorem 4.1.3 then gives:

J∑
j=1

|(Wgf)(n, xj)|2 = 1
4N+4

Y T
1 |Ẑn|2, (31)

J∑
j=1

xj|(Wgf)(n, xj)|2 = 1
4N+4

Y T
x |Ẑn|2, (32)

J∑
j=1

x2
j |(Wgf)(n, xj)|2 = 1

4N+4
Y T
x2 |Ẑn|2. (33)

That is, after the one-time cost of computing Y1, Yx and Yx2 , the amount of compu-

tation needed to find the quantities in (30) at any given time n consists of 1) a single

FFT of size 4N + 4 (and as such, N should be chosen so that 4N + 4 is a power of 2),

2) taking a pointwise modulus square of the result, and 3) taking three dot products

of this vector with Y1, Yx and Yx2 . Once (31), (32) and (33) are computed, the value

of the centroid curve (29) at n is simply Y T
x |Ẑn|2/Y T

1 |Ẑn|2.

The second moment (33) may be used to determine spectral deviations of vertical

strips of the spectrogram, that is, the square root of the variance of the distribution

{|(Wgf)(n, xj)|2}Jj=1 about its mean. This number indicates how “spread out” the

energy of the spectogram is along the vertical axis, and is explicitly defined as:√√√√√√√√√√
J∑
j=1

x2
j |(Wgf)(m,xj)|2

J∑
j=1

|(Wgf)(m,xj)|2
−


J∑
j=1

xj |(Wgf)(m,xj)|2

J∑
j=1

|(Wgf)(m,xj)|2


2

=

√
Y T
x2|Ẑn|2

Y T
1 |Ẑn|2

−
(
Y T
x |Ẑn|2

Y T
1 |Ẑn|2

)2

.

Figure 13 shows the centroids of the first 30-seconds-worth of Figure 7(c) along with

the centroids plus or minus the standard deviation. From Figure 13, we can see that

the spectral deviations are very small implying that the spectral centroids are an

accurate way of measuring the dominant frequency of the spectrogram.
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Figure 13: Spectral centroids (plus or minus their spectral deviations) of Figure 7(c).

In the next chapter, we apply this algorithm to real-world terahertz radar data,

successfully determining a subject’s heart and breath rate in several instances. Before

continuing however, we must take a moment to discuss an important preprocessing

step we often applied to the radar data as a means for dealing with clutter.

4.2.1 Preprocessing by High-Pass Filtering. Our radar data often has a

DC component that is the result of clutter. Specifically, while the beam created by

Dr. Petkie’s radar is often very narrow, and as such, most of the reflected energy

has bounced off of a moving object, there is always some portion of the energy that

reflects off of stationary objects. These clutter reflections cause no Doppler shift.

In other words, the reflected wave has the same frequency as the transmitted wave,

which, after demodulation, is manifested as a DC component in the radar data. As

a strong DC component may significantly distort the spectral centroid, we often first

preprocess the radar data to remove this component. Specifically, we first pass the

data through a high-pass filter. Specifically, letting e ∈ `1(Z) be some low-pass filter,

where
∞∑

n=−∞

e(n) = 1,
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we may first compute the local average of some signal f about some time m as:

x̆(m) = argmin
x∈R

∞∑
n=−∞

|f(m− n)− x|2 e(n)

= argmin
x∈R

∞∑
n=−∞

{
[f(m− n)]2 − 2xf(m− n) + x2

}
e(n)

= argmin
x∈R

∞∑
n=−∞

[f(m− n)]2 e(n)− 2x
∞∑

n=−∞

f(m− n)e(n) + x2

∞∑
n=−∞

e(n)

= argmin
x∈R

∞∑
n=−∞

[f(m− n)]2 e(n)− 2x
∞∑

n=−∞

f(m− n)e(n) + x2. (34)

The explicit value of the local average x̆(m) thus corresponds to the vertex of the

quadratic in (34), namely:

x̆(m) =
∞∑

n=−∞

f(m− n)e(n) = (f ∗ e)(m).

For significantly cluttered radar data f , this low-passed version (f ∗ e) of f contains

much of the DC component. By subtracting this component off, that is, by computing

f(m)− (f ∗ e)(m) = (f ∗ δ0)(m)− (f ∗ e)(m) = [f ∗ (δ0 − e)](m), (35)

where δ0 is the Dirac-δ filter centered at the origin, we produce a new signal with

little to no DC component. Note this new signal (35) is a high-passed version of f .

Indeed, taking the Fourier transform of δ0 − e is:

F(δ0 − e)(x) =
∞∑

n=−∞

(δ0 − e)(n)e−2πinx = 1−
∞∑

n=−∞

e(n)e−2πinx,

whose value at the origin is F(δ0 − e)(0) = 1−
∞∑

n=−∞

e(n) = 0.

53



V. Experimental Results

5.1 Examples

The data for the following three examples was collected by Dr. Petkie’s 240 GHz

radar system, where the transmitter/receiver was about 10 meters from the subject.

The three 60 second samples have a sampling rate of 20 kHz.

5.1.1 Example 1. In our first example, the subject is known to be at rest.

The subject alternates between fast and slow breathing rates, starting off breathing

at a fast rate for about the first 15 seconds and then slowing down for the next 15

seconds and then repeating this behavior for the last 30 seconds. To see how “spread

out” the energy of the spectrogram is, we plot the centroid along with the centroid

plus or minus its standard deviation, shown in Figure 14(a). These values for the

spectral centroids and spectral deviations can be computed directly from the IQ data

using the Toeplitz matrix-based algorithm discussed above in Section 4.2. Figure

14(b) shows the spectrogram of the centroid, which should provide information about

the heart and breath rates of the individual. Here, the red curve indicates a slowly

varying breath rate around 0.5 Hz. In particular, at around 30 seconds, we can see

the subject’s breath rate decrease, which agrees with the ground truth. Though we

do not see the heart rate from Figure 14(b) directly, this information may be gleaned

by summing across the rows of the spectrogram, as shown in Figure 14(c). Here, we

can see a peak around 0.5 Hz that corresponds to the breath rate, while the smaller

peaks in Figure 14(c) occurring at 1 and 1.5 Hz could correspond to the heart rate.

In particular, to determine how accurate these estimates of breath and heart

rates are, we can compare them against ground truth data taken from the subject

in the form of respiration belt and EKG signals. Figure 15(a) shows the EKG data

which was collected at the same time as the radar data analyzed in Figure 14. The

spectrogram of the EKG signal, shown in Figure 15(b), shows what frequencies are

present in the EKG signal at a given time. These frequencies correspond to the actual

heart rate of the subject. In particular, we can see that the heart rate of the subject is
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(a) A 10 second interval of the
centroid and its standard de-
viation. The centroid gives us
a way to measure the Doppler
shift at a given time and gives
us a signal that should be a
good approximation to the ve-
locity signal.

(b) The spectrogram of the
centroids should provide infor-
mation corresponding to heart
and breath motion. We can see
the varying breath rate slightly
below 0.5 Hz. More specif-
ically, notice that at 30 sec-
onds the breath rate decreases
as a result of the subject alter-
nating between fast and slow
breathing approximately every
15 seconds.
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(c) The sum of the rows of (b)
shows us what frequencies oc-
cur the most over the 60 sec-
ond sample. We can see a peak
at about 0.5 Hz, which corre-
sponds to the breath rate. The
peaks at 1 and 1.5 Hz might
correspond to the heart rate.

Figure 14: Spectral deviations and time-frequency analysis of the spectral centroid
for Example 1.

about 1.5 Hz, showing that the peak in Figure 14(c) at 1.5 Hz does indeed correspond

to the heart rate of the subject. Meanwhile, the respiration belt signal is shown in

Figure 15(c). Its spectrogram, seen in Figure 15(d), shows that the breath rate of the

subject is slightly less than 0.5 Hz. In short, for this particular data set, we were able

to accurately determine both the heart and breath rates of the subject.
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rate is around 1.5 Hz, meaning that the sub-
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(c) The respiration belt signal for Example 1,
which is obtained by strapping the respiration
belt around the abdomen or chest, inflating it,
and then measuring the changes in pressure
caused by inhalation and exhalation.

(d) The spectrogram of (c), which shows us
what frequencies are present in the respira-
tion belt signal (c) at a given time. From
this spectrogram, we can see that the respi-
ration rate is varying slightly below 0.5 Hz.
This breath rate may be determined from the
radar data. Again, we notice that at 30 sec-
onds the breath rate decreases as a result of
the subject alternating between fast and slow
breathing approximately every 15 seconds.

Figure 15: Truth data for heart and breath rate and their corresponding spectrograms
for Example 1.
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(a) A 10 second interval of the
centroid and its standard devi-
ation.

(b) The spectrogram of the
centroid, indicating the breath
rate at about 0.25 Hz.
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(c) The sum of the rows of (b)
again showing a peak at about
0.25 Hz, which corresponds to
the breath rate of the subject.

Figure 16: Spectral deviations and time-frequency analysis of the spectral centroid
for Example 2.

5.1.2 Example 2. In our second example, the subject is known to be at

rest, breathing at a constant rate during the 60 second sample. Paralleling Figures 14

and 15 for Example 1, Figure 16(a) shows the centroid curve (plus or minus the stan-

dard deviation curve) obtained from the radar data using the algorithm given above

in Section 4.2. Taking the spectrogram of this curve (Figure 16(b)) and summing the

result across the rows (Figure 16(c)) we gain some insight into the frequencies of the

velocity signal. In particular, experience tells us that the strong peak around 0.25 Hz

corresponds to the subject’s breath rate, a fact confirmed by taking the spectrogram

(Figure 17(d)) of the ground truth respiration data (Figure 17(c)). However, we were

unable to detect a meaningful second peak in either Figure 16(b) or Figure 16(c)

which would indicate the 1.5 Hz heart rate we know the subject had (Figures 17(a)

and (b)). In short, for this particular data set, we were able to accurately determine

the breath rate from the radar data, but were unable to determine the heart rate.
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(a) The EKG signal for Example 2. (b) The spectrogram of (a), showing a heart
rate of about 1.5 Hz, meaning that the sub-
jects heart beats 3 times every 2 seconds. The
harmonic at 3 Hz is a result of the EKG sig-
nal (a) having sharp peaks. This heart rate is
undetectable in the corresponding radar data.
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(c) The respiration belt signal for Example 2. (d) The spectrogram of (c), showing a res-
piration rate of about 0.25 Hz, meaning the
subject takes approximately 1 breath every 4
seconds. This breath rate may be determined
from the radar data.

Figure 17: Truth data for heart and breath rate and their corresponding spectrograms
for Example 2.
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(a) The centroid and its stan-
dard deviation. We can see
that between 25 and 40 sec-
onds the subject is holding his
breath, allowing the higher fre-
quency of the heart rate to be
seen.

(b) The spectrogram of the
centroid. We can see that
the subject is holding his
breath between 25 and 40 sec-
onds and, while the subject
is breathing, we see that the
subject’s breath rate is about
0.25 Hz. The higher frequen-
cies around 1.5 Hz could corre-
spond to the heart rate of the
subject.
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(c) The sum of the rows of
(b) again showing a peak at
about 0.25 Hz, which corre-
sponds to the breath rate of
the subject. We also see a rela-
tively strong second frequency
peak right below 1.5 Hz that
could correspond to the heart
rate of the subject.

Figure 18: Spectral deviations and time-frequency analysis of the spectral centroid
for Example 3.

5.1.3 Example 3. In our third example, the subject is known to be at rest,

breathing normally for the first 20 seconds, then holding his breath for 20 seconds,

and then breathing normally for the last 20 seconds. Figure 18(a) shows the centroid

curve, in which we can see that between 25 and 40 seconds the subject is holding his

breath, allowing the higher frequency of the heart rate to be seen. The spectrogram

of this curve is shown in Figure 18(b), and the sum across its rows is seen in Figure

18(c). We can see in Figure 18(b) that the subject is holding his breath between 25

and 40 seconds, and otherwise has a breath rate of 0.25 Hz as confirmed by taking

the spectrogram (Figure 19(d)) of the ground truth respiration data (Figure 19(c)).

Meanwhile, the nontrivial second peak in Figure 18(c) indicates the subject’s heart

rate is approximately 1.5 Hz, a fact confirmed by the spectrogram (Figure 19(b)) of

the EKG (Figure 19(a)). Thus, for this particular data set, we were able to accurately

determine both the breath and heart rates from the radar data.
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(a) The EKG signal for Example 3. (b) The spectrogram of (a) showing a heart
rate of about 1.5 Hz, meaning that the sub-
jects heart beats 3 times every 2 seconds.
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(c) The respiration belt signal for Example 3.
We can see that between 25 and 40 seconds
the subject is holding his breath.

(d) The spectrogram of (c) showing that the
subject is holding his breath between 25 and
40 seconds. During the first 25 seconds, the
subject is breathing, and we can see that the
subject’s breath rate is about 0.25 Hz, mean-
ing the subject takes approximately 1 breath
every 4 seconds. This breath rate may be de-
termined from the radar data.

Figure 19: Truth data for heart and breath rate and their corresponding spectrograms
for Example 3.
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5.2 Spectral Centroids of the Velocity Centroid’s Spectrogram

Up to this point, we have only used spectral centroids as a method to generate

a velocity estimate, whose spectrogram is taken to reveal heart and breath rates.

We now turn our focus to a repeated application of the spectral centroid idea. In

particular, after generating the velocity signal as before using spectral centroids, we

then take the spectral centroids of this velocity signal to get our heart and breath

rate estimates. By taking spectral centroids of the velocity signal over a band of

frequencies which typically contain only heart rate information, we form our heart

rate estimate. Similarly, by taking spectral centroids of the velocity signal over a

band of frequencies which typically only contain breath rate information, we form our

breath rate estimate. To be more precise, we take a closer look at the spectrogram of

a velocity signal obtained from a 240 GHz CW radar signal.

Consider, for example, the spectrogram shown in Figure 20, which was obtained

by performing a time-frequency analysis on a velocity signal obtained from a 240

GHz CW radar signal. We can see a dominant frequency at 0.25 Hz, and a second,

less intense frequency component at 1 Hz. From experience, we expect these two

frequencies to be the breath and heart rates of the subject, respectively. Suppose

we take the spectral centroids of the horizontal band of this spectrogram that lies

between 0 and 0.4 Hz on the vertical axis. Doing this would give us a centroid

curve that should do a decent job of indicating the breath rate of the subject at any

given time. Similarly, we could compute the spectral centroids of the band of the

spectrogram that lies between 0.75 and 1.5 Hz on the vertical axis, which would give

us a centroid curve that should do a decent job of indicating the subject’s heart rate.

We note this method is far from perfect, as it makes some a priori assumptions on

the range of a person’s breath and heart rates. Nevertheless, the approach seemed

to work very well in the next three examples, when compared with the ground truth

data provided by the respiration belt and EKG signals.
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Figure 20: Spectrogram showing heart and breath rate.

The IQ data for Examples 4 through 6 was collected by Dr. Petkie’s 240 GHz

radar system. For Examples 4 through 6, the data was sampled at a rate of 10 kHz

and was collected for 80 seconds on a subject that was about 10 meters from the trans-

mitter/reciever. For Example 7, the data was sampled at 600 Hz and was collected for

60 seconds on a subject that was about 30 meters from the transmitter/receiver. For

Examples 4 through 6, the breath and heart rate centroids, computed over frequency

ranges of 0 to 0.4 Hz and 0.75 to 1.5 Hz, respectively, are compared to pressure belt

and EKG ground truth data. Though these breath and heart rate centroid curves are

also computed for Example 7, no simultaneous ground truth data was available for

comparison.

5.2.1 Example 4. In our fourth example, the subject is known to be at rest,

breathing normally for the entire 80 second sample. Figure 21(a) shows a 10 second

portion of the real part of the radar signal. The spectrogram of this signal, seen in

Figure 21(b), shows us what frequencies are present in the signal at a given time.

These frequiences are proportional to the velocity of the subject, which corresponds

to the motion of the chest wall. In particular, the velocity of the subject’s body is

well-approximated by the spectral centroids (Figure 21(c)) of the spectrogram. These

centroids measure the Doppler shift at a given time and can be computed directly from

the radar signal (Figure 21(a)) using the Toeplitz matrix-based algorithm discussed
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above in Section 4.2. By doing a time-frequency analysis on Figure 21(c), we can

extract the periodic components of the velocity signal which should correspond to

heart and breath motion. The spectogram of the centroids is shown in Figure 21(d),

where we can see dominant frequencies at 1 and 0.25 Hz, corresponding to the heart

and breath rates, respectively. By computing spectral centroids of the velocity signal’s

spectrogram (Figure 21(d)) over the frequencies between 0.75 and 1.5 Hz, we form our

heart rate estimate, which is also plotted in Figure 21(d) as the upper black curve.

By also plotting the same curve over the spectrogram of the EKG (Figure 21(e)), we

see that our estimate is very close to the ground truth. Meanwhile, computing the

spectral centroids of the velocity signal’s spectrogram over the frequencies between 0

and 0.4 Hz yields our breath rate estimate. This estimate, plotted as the lower black

curve in Figure 21(d), is a very good estimate of the subject’s actual breath rate, as

seen by comparing it to the spectrogram of the pressure belt signal (Figure 21(f)).

In a real-life application of this theory, one would simply first compute the velocity

centroids, and then compute both the heart and breath rate centroids. That is, one

would have Figure 21(a), and compute Figure 21(c) and the two black curves in Figure

21(d) using three applications of the spectral centroid algorithm discussed in Section

4.2. That is, in a real-life application, the spectrograms depicted in Figures 21(b),

(d), (e), and (f) would never be explicitely computed, as the whole purpose of our

centroid computing algorithm is to bypass the large cost of computing Figures 21(b)

and (d), while the ground truth data behind Figures 21(e) and (f) would be entirely

unavailable. In short, both here and in the two examples to follow, the role of these

six images is to convince the reader of the feasibility of accurately estimating heart

and breath rates using only three computationally-fast applications of the main ideas

of Chapter IV.

5.2.2 Example 5. In our fifth example, the subject is known to be at rest,

and holds his breath in the middle of the 80 second sample. From Figure 22(c),

we can see that between 15 and 55 seconds the subject holds his breath, allowing
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the higher frequency of the heart rate to be seen. Because of this breath-holding, a

breath-based component of the spectrogram (Figure 22(d)) of the velocity signal can

only be seen after 55 seconds. Figure 22(e) shows that our heart rate estimate closely

matches the ground truth throughout. However, Figure 22(f) shows that this method

of estimating breath rate performs poorly when the subject is not breathing.

5.2.3 Example 6. In our sixth example, the subject is known to be at rest,

and takes two yawns during the 80 second sample. From Figures 23(b) and (c), we

can see that the subject yawns at 30 and 60 seconds, manifested in the radar signal

as Doppler shifts of large magnitude. Here, both our heart and breath rate estimates

are very accurate when compared to the ground truth. In particular, in Figure 23(f),

one may see that our estimate even captures the slight change in breath rate caused

by the yawns.

5.2.4 Example 7. In our seventh example, the subject is known to be at

rest, breathing normally for the entire 60 second sample. Though no ground truth

is available for this data set, we may nevertheless form our breath and heart rate

estimates, as shown in Figure 24. These estimates seem consistent with data gathered

from this particular subject in the past. The reason this data set is included in this

study is that it was gathered at the relatively large distance of 30 meters. That is,

Dr. Petkie’s radar shows promise in being able to facilitate heart and breath rate

detection at distances not often seen before in the literature.
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(a) A ten second portion of the
real part of a high-pass filtered
radar signal that was sampled
at 10 kHz on a subject lo-
cated about 10 meters from the
transmitter/receiver.

(b) The spectrogram of the
radar signal, which shows us
what frequencies are present at
what time. The frequencies are
proportional to the velocity of
the target, which corresponds
to the motion of the chest wall.
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(c) The spectral centroids
of (b), which measure the
Doppler shift at a given time.
Using the algorithm of Section
4.2 these spectral centroids
can be computed directly from
the radar signal (a).

(d) The spectrogram of (c),
which indicates any periodic
component of the velocity sig-
nal (c) related to the heart
and breath rates of the subject.
Also plotted are the black cen-
troid curves corresponding to
the bands of this spectrogram
from 0 to 0.4 Hz and from 0.75
to 1.5 Hz, which are our breath
and heart rate estimates, re-
spectively. Again, using the
ideas of Chapter IV, these es-
timates can be computed di-
rectly from (c).

(e) The spectrogram of the
EKG signal, which gives us a
way to check our method for
heart rate detection. The cen-
troid curve corresponding to
the band of the spectrogram
(d) between 0.75 and 1.5 Hz
is also plotted to see how well
it matches the true heart rate.
We can see that our estimated
heart rate is very close to the
actual heart rate of about 1 Hz.
The harmonic at about 2 Hz is
a result of a “peaky” EKG sig-
nal.

(f) The spectrogram of the
respiration belt signal, which
gives us a way to check our
method for breath rate detec-
tion. The centroid curve cor-
responding to the band of the
spectrogram (d) between 0 and
0.4 Hz is also plotted to see
how well it matches the true
breath rate. We can see that
our estimated breath rate is
very close to the actual breath
rate of about 0.25 Hz.

Figure 21: Heart and breath rate detection in Example 4.
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(a) The real part of the high-
pass filtered radar signal that
was sampled at 10 kHz on a
subject located about 10 me-
ters from the transmitter/re-
ceiver. We can see that be-
tween 15 and 55 seconds the
subject is holding his breath.

(b) The spectrogram of the
radar signal.
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(c) The spectral centroids of
(b). Again, we can see that
between 15 and 55 seconds the
subject holds his breath, allow-
ing the higher frequency of the
heart rate to be seen.

(d) The heart and breath rate
estimates on top of the spec-
trogram of (c).

(e) The heart rate estimate on
top of the spectrogram of the
EKG signal. We can see that
our heart rate estimate is very
close to the actual heart rate of
about 1 Hz.

(f) The breath rate estimate
on top of the spectrogram of
the respiration belt signal.

Figure 22: Heart and breath rate detection in Example 5.
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(a) A ten second portion of the
high-pass filtered radar signal
that was sampled at 10 kHz on
a subject located about 10 me-
ters from the transmitter/re-
ceiver.

(b) The spectrogram of the
radar signal. We can see that
the subject yawns at 30 and 60
seconds.
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(c) The spectral centroids of
(b).

(d) The heart and breath rate
estimates on top of the spec-
trogram of (c).

(e) The heart rate estimate on
top of the spectrogram of the
EKG signal. We can see that
our heart rate estimate is very
close to the actual heart rate of
about 1 Hz.

(f) The breath rate estimate
on top of the spectrogram of
the respiration belt signal. We
can see that our breath rate es-
timate is very close to the ac-
tual breath rate of about 0.25
Hz, with subtle variation in the
rate caused at 30 and 60 sec-
onds by the yawns.

Figure 23: Heart and breath rate detection in Example 6.
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(a) The real part of the high-pass filtered
radar signal that was sampled at 600 Hz on
a subject located about 30 meters from the
transmitter/receiver.

(b) The spectrogram of the radar signal,
which shows us what frequencies are present
at what time. The frequencies are propor-
tional to the velocity of the target, which cor-
responds to the motion of the chest wall.
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(c) The spectral centroids of (b), which mea-
sure the Doppler shift at a given time. Using
a Toeplitz matrix-based, computational trick,
the spectral centroids can be computed di-
rectly from the radar signal.

(d) The spectrogram of (c), which provides in-
formation corresponding to the periodic mo-
tion related to the heart and breath rates
of the target. Also plotted are the centroid
curves corresponding to the bands of this spec-
trogram from 0 to 0.4 Hz and from 0.75 to 1.5
Hz. We call these centroid curves the breath
rate estimate and the heart rate estimate, re-
spectively. Using a Toeplitz matrix-based,
computational trick, the heart and breath rate
estimates can be computed directly from (c).
We see that our heart rate estimate is 1 Hz
and our breath rate estimate is 0.25 Hz.

Figure 24: Heart and breath rate detection in Example 7.
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